

PowerFLOW Analysis DLR-F11 Configuration

HiLiftPW-2 San Diego – 2013

Benedikt König André Ribero Ehab Fares Swen Nölting

Overview

- Introduction Lattice Boltzmann Method
- Grid Convergence Study
- Reynolds Number Study
 - Impact of Laminar/Turbulent Transition
- General Flow Analysis
- Comparison Config 4 vs Config 5

Overview Simulations

Description	Low Reynolds	High Reynolds
Case 1	-	16° (c/m/f)
Case 2 a/b	19°	-
Case 3 a/b	0°-22°	0°-23.5°
Case 3 a/b with Transition	16°, 19°	16°, 19°

Lattice Boltzmann Method

Lattice Boltzmann Method

 Simulations performed with Lattice Boltzmann based solver PowerFLOW 5.0 beta

- D3Q19 LBM
 - Cubic cells (Voxels)
 - Surface elements (Surfels)
- Fully transient
- Turbulence Model: LBM-VLES
 - Modified RNG k- ε model for unresolved scales
 - Swirl model
 - Extended wall model
- LTT Model
 - Automatically determines transition locations

Lattice Boltzmann Method Grid Scheme

- Cartesian Grid
- Voxel/Surfel concept with cut cells
 → no surface fitted grid required
- Automatic and robust grid generation process

Lattice Boltzmann Method Case Setups

Grid Refinement Study

Refinement ratio 1.4

	Voxels	Resolution		Refine	Number Total	_
	[10 ⁶]	Space [mm]	Time [sec]	Ratio	Voxels Ratio	0.1sec(*)
Coarse	90.3	0.23	6.0x10 ⁻⁷	1.4	2.26	0.6d
Medium	214.6	0.16	4.2x10 ⁻⁷	1.4	2.37	1.6d
Fine	545.7	0.11	3.0x10 ⁻⁷	1.4	2.54	4.2d

(*) simulated physical time on 560 cores Intel Sandybridge 2.7GHz

Reynolds Number Study

medium-equivalent grid used

Voxels	Resolu	Runtime per	
	Space [mm]	Time [sec]	0.1sec(*)
280 x 10 ⁶	0.14	3.9 x 10 ⁻⁷	1.9d

Lattice Boltzmann Method Example – Vorticity

Gird Convergence Study

Grid Convergence Study Lift

- Asymptotic convergence not yet reached
- Trend lines (for t > 0.25 sec) indicate that for longer runtimes picture will change

Grid Convergence Study Drag and Pitching Moment

- Asymptotic convergence achieved for drag
- Pitching moment similar to lift, still showing slow trends

Grid Convergence Study Cp-Distributions

Grid Convergence Study Cp-Distributions

Grid Convergence Study Unsteadiness at Higher Resolution

Reynolds Number Study Config 5

Results

Reynolds Number Study Lift Polar

- CL under-predicted → laminar/turbulent
- Lift slope under-predicted and variation not captured → effect of half-model testing? (<u>compare peniche effect</u>)
- 3. Delayed stall (due to under-predicted lift?)

 Reynolds trends captured well except for polar shape difference between low and high Reynolds numbers in WT

Reynolds Number Study Drag Polar

- Very good agreement at low CL
- Over-predicting drag around Clmax (partly due to laminar/turbulent transition)

Reynolds trend for drag well captured

Reynolds Number Study Pitching Moment Polar

Reynolds Number Study Pressure Distributions

- Pressure distributions at Alpha= 7°,16°,21° are shown
- Inboard (PS02) and outboard (PS08) sections

Reynolds Number Study Pressure Distributions – Alpha = 7deg

Reynolds Number Study Pressure Distributions – Alpha = 16deg

Reynolds Number Study Pressure Distributions – Alpha = 21deg

Reynolds Number Study with Laminar/Turbulent Transition

Results

Transition Study

Pressure Distributions – Alpha = 16deg

- Inclusion of laminar/turbulent transition significantly improves CL levels, especially at low Reynolds number
- Work in progress

Transition Study

Pressure Distributions – Alpha = 16deg

Flow Analysis and Comparison to Experiment

Low Reynolds Number

Flow Visualization Surface Flow – Alpha = 7deg

Flow Visualization Surface Flow – Alpha = 7deg

Flow Visualization Surface Flow – Alpha = 18.5deg

Flow Visualization Surface Flow – Alpha = 18.5deg

Flow Visualization Surface Flow – Alpha = 18.5deg

Flow Visualization Surface Flow – Alpha = 21deg

Flow Visualization Surface Flow – Alpha = 21deg, fully turbulent

Velocity Profiles Inboard Wing

X-Velocity Profiles - Plane 1, Window B, Line 1

X-Velocity Profiles - Plane 1, Window C, Line 1

Velocity Profiles Outboard Wing – Flap

X-Velocity Profiles - Plane 2, Window E, Line 1

X-Velocity Profiles - Plane 3, Window E, Line 2

Comparison Config 4 vs Config 5

Results

Comparison Config 4 vs Config 5 Overview – Re = 1.35m

 Differences between Config 4 and 5 are smaller than overall differences to experiment
 →Should still be a valid comparison

Comparison Config 4 vs Config 5 Surface Stream Lines – Alpha = 19deg

Config 4

Config 5

The flow separation driving the wing stall is missing on Config 4

→ Pressure tube bundles are crucial to predict stall correctly

Comparison Config 4 vs Config 5 Total Pressure in the Stall Region – Alpha = 19deg

Comparison Config 4 vs Config 5 X-Vorticity in the Stall Region – Alpha = 19deg

Conclusions

- General
 - Good agreement with experimental pressure distributions
 - Significant dependency on laminar/turbulent transition
 - Stall mechanism well predicted but separation too small
 → stall delayed
- Resolution Study
 - Reasonable grid convergence achieved for AoA=16deg
 - impacted by unsteady flow
- Reynolds Study
 - Reynolds Trends captured well

Next Steps

- Run Grid Sensitivity Study at AoA=7deg
- Investigate dependency of stall on
 - Laminar/turbulent transition
- Investigate WT effects
 - WT walls
 - Peniche
- Optimize grids
 - for low and high Reynolds numbers separately

Acknowledgement

We are grateful for support in conduction the simulations from

- McGill University, Montreal, Canada
- Purdue University, West Lafayette, IN

Thank You!

Additional Slides

Consideration on Measured Polar Shape

- Overall the peniche height has an influence, which can potentially not be fully corrected for
- Especially at lower Reynolds
 Numbers the polar shape
 can change due to the
 peniche

Figure 15: Measured lift curves for three different peniche heights

From: Application of Advanced CFD Tools for High Reynolds Number Testing,

S. Melber-Wilkending and G. Wichmann, DLR, AIAA 2009-0418

